સમગુણોત્તર શ્રેણીનું પ્રથમ પદ $1$ છે. તેના ત્રીજા અને પાંચમાં પદોનો સરવાળો $90$ છે. આ સમગુણોત્તર શ્રેણીનો સામાન્ય ગુણોત્તર શોધો.
Let $a$ and $r$ be the first term and the common ratio of the $G.P.$ respectively.
$\therefore $ $a=1$ $a_{3}=a r^{2}=r^{2} \quad a_{5}=a r^{4}=r^{4}$
$\therefore r^{2}+r^{4}=90$
$\Rightarrow r^{4}+r^{2}-90=0$
$\Rightarrow r^{2}=\frac{-1+\sqrt{1+360}}{2}=\frac{-1 \pm \sqrt{361}}{2}=-10$ or $9$
$\therefore r=\pm 3$ [ Taking real roots ]
Thus, the common ratio of the $G.P.$ is $±3$ .
સમીકરણ $x^2 - 18x + 9 = 0$ ઉકેલો વચ્ચેનો સમગુણોત્તર મધ્યક કયો હશે ?
$0.\mathop {423}\limits^{\,\,\,\, \bullet \,\,\, \bullet \,} = $
જો $a_{1}, a_{2}, a_{3}, \ldots$ એ સમગુણોતર શ્રેણીમાં છે કે જેથી $a_{1}<0$ ; $a_{1}+a_{2}=4$ અને $a_{3}+a_{4}=16.$ જો $\sum\limits_{i=1}^{9} a_{i}=4 \lambda,$ તો $\lambda$ મેળવો.
શ્રેણી $\frac{1}{3}, \frac{5}{9}, \frac{19}{27}, \frac{65}{81}, \ldots \ldots$ નાં પ્રથમ $100$ પદોના સરવાળો જેટલો કે તેથી નાનો મહતમ પૂણાંક ........ છે.
$\sqrt 3 \, + \,\frac{1}{{\sqrt 3 }}\, + \,\frac{1}{{3\sqrt 3 }}\, + \,.....\,$ શ્રેણીના પદોનો સરવાળો કેટલો થાય?