एक अतिपरवलय की नाभियाँ $( \pm 2,0)$ हैं तथा इसकी उत्केन्द्रता $\frac{3}{2}$ है। प्रथम चतुर्थांश में अतिपरवलय के एक बिंदु पर एक स्पर्श रेखा, जो $2 x+3 y=6$ के लंबवत है, खींची जाती है। यदि यह स्पर्श रेखा, $x$ - तथा $y$-अक्षों पर क्रमशः अंतःखंड $a$ तथा $b$ बनाती है, तो $|6 \mathrm{a}|+|5 \mathrm{~b}|$ बराबर है_______.

  • [JEE MAIN 2023]
  • A

    $11$

  • B

    $12$

  • C

    $13$

  • D

    $10$

Similar Questions

अतिपरवलय $\frac{x^{2}}{4}-\frac{y^{2}}{5}=1$ के नाभिलंब के एक सिरे (जो प्रथम चतुर्थांश में है) पर खींची गई स्पर्श रेखा $x$-अक्ष तथा $y$-अक्ष को क्रमश बिन्दुओं $A$ तथा $B$ पर मिलती हैं, तो $( OA )^{2}-( OB )^{2}$, जहाँ $O$ मूल बिंदु है, बराबर है

  • [JEE MAIN 2014]

यदि बिंदु $(4,6)$ से होकर जाने वाले मानक अतिपरवलय की उत्केंद्रता $2$ है, तो $(4,6)$ पर अतिपरवलय पर खींची गई स्पर्श रेखा का समीकरण है 

  • [JEE MAIN 2019]

एक अतिपरवलय की अनुप्रस्थ अक्ष की लम्बाई $7$ है तथा वह बिन्दु  $(5, -2)$ से गुजरता है। अतिपरवलय का समीकरण है

एक समकोणीय अतिपरवलय $(rectangular\,hyperbola)$ $x^2-y^2=a^2, a>0$, पर तीन बिन्दुएँ $A, B, C$ इस प्रकार ली गई हैं कि $A=(-a, 0) ; B$ एवं $C$ को $x$-अक्ष के सापेक्ष सममितिय $(symmetrically)$ तरीके से उस अतिपरवलय की ऐसी शाखा पर रखा जाता है जिसपर $A$ नहीं है। मान लीजिए कि त्रिभुज $A B C$ समबाहु है। यदि त्रिभुज $A B C$ की भुजा की लंबाई $k a$ है, तब $k$ निम्न अंतराल में होगा:

  • [KVPY 2018]

अतिपरवलय $\frac{{{x^2}}}{{16}} - \frac{{{{(y - 2)}^2}}}{9} = 1$ की नाभियाँ हैं