$\tan 3x = 1$ का व्यापक हल है
$n\pi + \frac{\pi }{4}$
$\frac{{n\pi }}{3} + \frac{\pi }{{12}}$
$n\pi $
$n\pi \pm \frac{\pi }{4}$
माना अन्तराल $(0,10)$ में समीकरण $\sin x=\cos ^2 x$ के हलों की संख्या है।
यदि $\cos \theta = \frac{{ - 1}}{2}$और ${0^o} < \theta < {360^o}$, तब $\theta $ का मान होगा
व्यंजक $(1 + \tan x + {\tan ^2}x)$ $(1 - \cot x + {\cot ^2}x)$, $x$ के निम्न मान के लिए धनात्मक मान रखता है
माना $S =\left\{\theta \in[0,2 \pi]: 8^{2 \sin ^2 \theta}+8^{2 \cos ^2 \theta}=16\right\}$ है। तो $n ( S )+\sum_{\theta \in S }\left(\sec \left(\frac{\pi}{4}+2 \theta\right) \operatorname{cosec}\left(\frac{\pi}{4}+2 \theta\right)\right)$बराबर है :
समीकरण $1+\sin ^{4} x =\cos ^{2} 3 x , x \in\left[-\frac{5 \pi}{2}, \frac{5 \pi}{2}\right]$ के हलों की संख्या हैं