The general solution of the trigonometric equation $\tan \theta = \cot \alpha $ is
$\theta = n\pi + \frac{\pi }{2} - \alpha $
$\theta = n\pi - \frac{\pi }{2} + \alpha $
$\theta = n\pi + \frac{\pi }{2} + \alpha $
$\theta = n\pi - \frac{\pi }{2} - \alpha $
Find the general solution of the equation $\cos 4 x=\cos 2 x$
If $0 \le x < 2\pi $ , then the number of real values of $x,$ which satisfy the equation $\cos x + \cos 2x + \cos 3x + \cos 4x = 0$ is . . .
The variable $x$ satisfying the equation $\left| {\sin \,x\,\cos \,x} \right| + \sqrt {2 + {{\tan }^2}\,x + {{\cot }^2}\,x} = \sqrt 3$ belongs to the interval
The positive integer value of $n>3$ satisfying the equation $\frac{1}{\sin \left(\frac{\pi}{n}\right)}=\frac{1}{\sin \left(\frac{2 \pi}{n}\right)}+\frac{1}{\sin \left(\frac{3 \pi}{n}\right)}$ is
If $\sin {\rm{ }}\left( {\frac{\pi }{4}\cot \theta } \right) = \cos {\rm{ }}\left( {\frac{\pi }{4}\tan \theta } \right)\,\,,$ then $\theta = $