रेखा $ax + by + c = 0$ वृत्त ${x^2} + {y^2} = {r^2}$ पर अभिलम्ब है। रेखा $ax + by + c = 0$ द्वारा वृत्त पर काटे गये अन्त:खण्ड की लम्बाई है
$r$
${r^2}$
$2r$
$\sqrt r $
वृत्त ${x^2} + {y^2} = 50$ के उन बिन्दुओं पर, जहाँ रेखा $x + 7 = 0$ इसको काटती है, स्पर्श रेखाओं के समीकरण हैं
यदि रेखा $y = mx + c$ वृत्त ${x^2} + {y^2} - 2x - 4y + 3 = 0$ को बिन्दु $(2, 3)$ पर स्पर्श करती हो, तो $c =$
एक रेखा $lx + my + n = 0$, वृत्त ${x^2} + {y^2} = {a^2}$ के बिन्दु $P$ व $Q$ पर मिलती है। बिन्दु $P$ व $Q$ पर स्पर्श रेखायें खींची जाती हैं जो $R$ पर मिलती हैं, तो $R$ के निर्देशांक हैं
यदि रेखा $lx + my + n = 0$ वृत्त ${(x - h)^2} + {(y - k)^2} = {a^2}$ की स्पर्श रेखा हो, तो
यदि तीन वृत्तों ${x^2} + {y^2} - 2{\lambda _i}\,x = {c^2},(i = 1,\,2,\,3)$ के केन्द्रों की मूलबिन्दु से दूरियाँ गुणोत्तर श्रेणी में हों, तब वृत्त ${x^2} + {y^2} = {c^2}$ पर किसी बिन्दु से उन पर खींची गयीं स्पर्श रेखाओं की लम्बाइयाँ होंगी