अंतराल $(0,4 \pi)$ में $\theta$ के मानों, जिनके लिए रैखिक समीकरण निकाय
$3(\sin 3 \theta) x-y+z=2$
$3(\cos 2 \theta) x+4 y+3 z=3$
$6 x+7 y+7 z=9$
का कोई हल नहीं है, की संख्या है:
$6$
$7$
$8$
$9$
समीकरण निकाय $x + y - z = 0$, $3x - y - z = 0$, $x - 3y + z = 0$ के हलों की संख्या होगी
यदि $\left| {{\kern 1pt} \begin{array}{*{20}{c}}1&2&3\\2&x&3\\3&4&5\end{array}\,} \right| = 0,$ तो $x =$
माना$\mathrm{A}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha\end{array}\right]$ तथा $|2 \mathrm{~A}|^3=2^{21}$ है, जहाँ $\alpha, \beta \in \mathrm{Z}$ है। तो $\alpha$ का एक मान है
यदि $\Delta = \left| {\,\begin{array}{*{20}{c}}a&{a + b}&{a + b + c}\\{3a}&{4a + 3b}&{5a + 4b + 3c}\\{6a}&{9a + 6b}&{11a + 9b + 6c}\end{array}\,} \right|$ जहाँ $a = i,b = \omega ,c = {\omega ^2}$, तब $\Delta $का मान होगा
$k$ का वह मान जिसके लिये समीकरण निकाय $x + ky + 3z = 0,$ $3x + ky - 2z = 0,$ $2x + 3y - 4z = 0$ का परिमेय संख्याओं के समुच्चय में अशून्य हल है