किसी कल्चर में बैक्टीरिया की संख्या प्रत्येक घंटे पश्चात् दुगुनी हो जाती है। यदि प्रारंभ में उसमें $30$ बैक्टीरिया उपस्थित थे, तो बैक्टीरिया की संख्या दूसरे, चौथे तथा $n$ वें घंटों बाद क्या होगी ?
It is given that the number of bacteria doubles every hour. Therefore, the number of bacteria after every hour will form a $G.P.$
Here, $a=30$ and $r=2 \quad \therefore a_{3}=a r^{2}=(30)(2)^{2}=120$
Therefore, the number of bacteria at the end of $2^{\text {nd }}$ hour will be $120 .$
$a_{5}=a r^{4}=(30)(2)^{4}=480$
The number of bacteria at the end of $4^{\text {th }}$ hour will be $480 . $
$a_{n+1}=a r^{n}=(30) 2^{n}$
Thus, number of bacteria at the end of $n^{t h}$ hour will be $30(2)^{n}$
यदि किसी गुणोत्तर श्रेणी का $p$ वाँ, $q$ वाँ तथा $r$ वाँ पद क्रमश : $a, b$ तथा $c$ हो, तो सिद्ध कीजिए
कि $a^{q-r} b^{r-p} c^{P-q}=1$
अनुक्रम $\sqrt 2 ,\;\sqrt {10} ,\;5\sqrt 2 ,\;.......$ का $7$ वाँ पद है
यदि $a,\;b,\;c$ समान्तर श्रेणी में, $b,\;c,\;d$ गुणोत्तर श्रेणी में तथा $c,\;d,\;e$ हरात्मक श्रेणी में हैं, तो $a,\;c,\;e$ होंगे
एक अनुक्रम $ < {a_n} > \;$ के लिये ${a_1} = 2$ तथा $\frac{{{a_{n + 1}}}}{{{a_n}}} = \frac{1}{3}$, तब $\sum\limits_{r = 1}^{20} {{a_r}} $ है
एक गुणोत्तर श्रेणी का तीसरा पद, पहले पद का वर्ग है। यदि दूसरा पद $8$ है, तब छँठा पद है