यदि मध्यमान प्रमेय से, $f'({x_1}) = \frac{{f(b) - f(a)}}{{b - a}}$, तो
$a < {x_1} \le b$
$a \le {x_1} < b$
$a < {x_1} < b$
$a \le {x_1} \le b$
वास्तविक गुणांक वाले बहुपद $g ( x )$ के लिये, माना $g ( x )$ के विभिन्न वास्तविक मूलों की संख्या $m _{ g }$ से दर्शाते है। माना वास्तविक गुणांक वाले बहुपदों का समुच्चय $S$ है जो
$S=\left\{\left(x^2-1\right)^2\left(a_0+a_1 x+a_2 x^2+a_3 x^3\right): a_0, a_1, a_2, a_3 \in R\right\}$ द्वारा परिभाषित है। बहुपद $f$ के लिये, माना $f^{\prime}$ तथा $f^{\prime \prime}$ क्रमशः इसके प्रथम तथा द्वितीय कोटि अवकलज है। तब $\left( m f^{\prime}+ m f^{\prime \prime}\right)$, जहाँ $f \in S$ का न्यूनतम संभव मान होगा
फलन $f(x) = {e^x},a = 0,b = 1$ के लिए मध्यमान प्रमेय में $c$ का मान होगा
यदि फलन $f(x)=2 x^{3}+ a x^{2}+ b x$ के लिए अंतराल $[-1,1]$ में बिंदु $c =\frac{1}{2}$ पर रोले का प्रमेय लागू है, तो $2 a + b$ का मान है
यदि $f:[-5,5] \rightarrow R$ एक संतत फलन है और यदि $f^{\prime}(x)$ किसी भी बिंदु पर शून्य नहीं होता है तो सिद्ध कीजिए कि $f(-5) \neq f(5)$
संतत फलनों (Continuous functions) के प्रत्येक युग्म (pair) $f , g :[0,1] \rightarrow R$ जिनके लिये अधिकतम $\{ f ( x ): x \in[0,1]\}$ = अधिकतम $\{ g ( x ): x \in[0,1]\}$ है, के लिये सत्य कथन है(हैं)
$(A)$ किसी $c \in[0,1]$ के लिये $(f(c))^2+3 f(c)=(g(c))^2+3 g(c)$
$(B)$ किसी $c \in[0,1]$ के लिये $(f(c))^2+f(c)=(g(c))^2+3 g(c)$
$(C)$ किसी $c \in[0,1]$ के लिये $(f(c))^2+3 f(c)=(g(c))^2+g(c)$
$(D)$ किसी $c \in[0,1]$ के लिये $(f(c))^2=(g(c))^2$