यदि मध्यमान प्रमेय से, $f'({x_1}) = \frac{{f(b) - f(a)}}{{b - a}}$, तो
$a < {x_1} \le b$
$a \le {x_1} < b$
$a < {x_1} < b$
$a \le {x_1} \le b$
यदि फलन $f(x)=2 x^{3}+ a x^{2}+ b x$ के लिए अंतराल $[-1,1]$ में बिंदु $c =\frac{1}{2}$ पर रोले का प्रमेय लागू है, तो $2 a + b$ का मान है
यदि , अन्तराल $[1,\,2]$ में रौले प्रमेय को संतुष्ट करता है तथा $f(x)$ ,$[1,\,2]$ में सतत् है, तो $\int_1^2 {f'(x)dx} $ का मान है
यदि फलन $f(x) = {x^3} - 6{x^2} + ax + b$ रौले प्रमेय को अंतराल $[1,\,3]$ में संतुष्ट करता है और $f'\left( {\frac{{2\sqrt 3 + 1}}{{\sqrt 3 }}} \right) = 0$, तब $a =$ ..............
मध्यमान प्रमेय $f(b) - f(a) = (b - a)f'(c)$ में यदि $a = 4$, $b = 9$ तथा $f(x) = \sqrt x $ हो, तो $c$ का मान है
किस अन्तराल के लिए फलन $\frac{{{x^2} - 3x}}{{x - 1}}$ रोले प्रमेय की सभी शर्तों को सन्तुष्ट करता है