The number of solutions of the equation $\log _{(x+1)}\left(2 x^{2}+7 x+5\right)+\log _{(2 x+5)}(x+1)^{2}-4=0, x\,>\,0$, is $....$
$2$
$4$
$6$
$1$
If ${x^2} + px + 1$ is a factor of the expression $a{x^3} + bx + c$, then
Equation $\frac{3}{{x - {a^3}}} + \frac{5}{{x - {a^5}}} + \frac{7}{{x - {a^7}}} = 0,a > 1$ has
The set of values of $x$ which satisfy $5x + 2 < 3x + 8$ and $\frac{{x + 2}}{{x - 1}} < 4,$ is
The number of real solutions of the equation $3\left(x^2+\frac{1}{x^2}\right)-2\left(x+\frac{1}{x}\right)+5=0$, is
Let $a, b, c$ be non-zero real roots of the equation $x^3+a x^2+b x+c=0$. Then,