સમીકરણ $2 \theta-\cos ^{2} \theta+\sqrt{2}=0$ નાં $R$ માં ઉકેલોની સંખ્યા $\dots\dots$ છે.
$1$
$2$
$3$
$4$
sin $2 \theta+\tan 2 \theta>0$ થાય તેવી છે $\theta \in[0,2 \pi]$ ની શક્ય તમામ કિંમતો ........... માં આપેલ છે.
$\cos x=\frac{1}{2}$ ઉકેલો.
અહી $S=\left[-\pi, \frac{\pi}{2}\right)-\left\{-\frac{\pi}{2},-\frac{\pi}{4},-\frac{3 \pi}{4}, \frac{\pi}{4}\right\}$ આપલે છે. તો ગણ $=\{\theta \in S : \tan \theta(1+\sqrt{5} \tan (2 \theta))=\sqrt{5}-\tan (2 \theta)\}$ ની સભ્ય સંખ્યા $...$ થાય.
જો $\tan \theta = - \frac{1}{{\sqrt 3 }}$ અને $\sin \theta = \frac{1}{2}$, $\cos \theta = - \frac{{\sqrt 3 }}{2}$, તો $\theta $ ની કિમત મેળવો.
સમીકરણ
$\left| {\,\begin{array}{*{20}{c}}{1 + {{\sin }^2}\theta }&{{{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{1 + {{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{{{\cos }^2}\theta }&{1 + 4\sin 4\theta }\end{array}\,} \right| = 0$
નું સમાધાન કરે તેવી $\theta $ ની $0$ અને $\pi /2$ ની વચ્ચેની કિમત મેળવો.