ભૌતિક રાશિ $A\, = \,\frac{{{P^3}{Q^2}}}{{\sqrt {R}\,S }}$ ના માપન માં રાશિઓ $P, Q, R$ અને $S$ માં રહેલી ટકાવાર ત્રુટિઓ અનુક્રમે $0.5\%,\,1\%,\,3\%$ અને $1 .5\%$ છે. $A$ ના મૂલ્યમાં રહેલી મહત્તમ ટકાવાર ત્રુટિ ........... $\%$ થશે
$8.5$
$6.0$
$7.5$
$6.5$
ત્રણ વિદ્યાર્થી $S_{1}, S_{2}$ અને $S_{3}$ એ સાદા લોલકની મદદથી ગુરુત્વપ્રવેગ $(g)$ માપવાનો પ્રયોગ કરે છે. તે જુદી જુદી લંબાઈના લોલક વડે જુદા જુદા દોલનોની સંખ્યા માટેનો સમય નોંધે છે. આ અવલોકનો નીચેના ટેબલમાં આપેલા છે.
વિદ્યાર્થીની સંખ્યા | લોલકની લંબાઈ $(cm)$ | દોલનોની સંખ્યા $(n)$ | દોલનો માટેનો કુલ સમય | આવર્તકાળ $(s)$ |
$1.$ | $64.0$ | $8$ | $128.0$ | $16.0$ |
$2.$ | $64.0$ | $4$ | $64.0$ | $16.0$ |
$3.$ | $20.0$ | $4$ | $36.0$ | $9.0$ |
(લંબાઇની લઘુતમ માપશક્તિ $=0.1 \,{m}$, સમયની લઘુતમ માપશક્તિ$=0.1\, {s}$ )
જો $E_{1}, E_{2}$ અને $E_{3}$ એ $g$ માં અનુક્રમે $1,2$ અને $3$ વિદ્યાર્થીની પ્રતિશત ત્રુટિ હોય, તો લઘુત્તમ પ્રતિશત ત્રુટિ કયા વિદ્યાર્થી દ્વારા મેળવાય હશે?
એક વિદ્યાર્થી સમૂહ દ્વારા ભૌતિક સંતુલનનો ઉપયોગ પદાર્થનું દળ શોધવા માટે વપરાય છે. વદ્યુ સંખ્યામાં લેવાતા અર્થઘટનો શું ઘટશે?
જો તારની લંબાઈ અને વ્યાસ બંનેના માપનમાં પ્રતિશત ત્રુટી $0.1 \%$ હોય તો આ તારના અવરોધના માપનમાં ત્રુટી......
સાદા લોલકનાં દોલનોનો આવર્તકાળ $100\,cm$ લંબાઈના લોલક વડે માપવામાં આવે છે જેમાં $25$ દોલનો માટે માપેલ સમય $50\,sec$ જેટલો મળે છે. સ્ટોપવોચની લઘુત્તમ માપશક્તિ $0.1\,sec$ અને મીટર પટ્ટીની લઘુત્તમ માપશક્તિ $0.1\,cm$ હોય તો $g$ ના મૂલ્યમાં મહતમ પ્રતિશત ત્રુટિ કેટલા $\%$ હશે?
લંબચોરસની લંબાઈ અને પહોળાઈ અનુક્રમે $(5.7 \pm 0.1) cm $ અને $(3.4 \pm 0.2) cm$ છે. ત્રુટિ મર્યાદામાં લંબચોરસનું ક્ષેત્રફળ ...મળે.