बिन्दु $(1, 3)$ और $(5, 1)$ एक आयत के विपरीत शीर्ष हैं। शेष दो शीर्ष, रेखा $y = 2x + c$ पर स्थित हैं, तब $c$ का मान होगा

  • [IIT 1981]
  • A

    $4$

  • B

    $-4$

  • C

    $2$

  • D

    $-2$

Similar Questions

रेखाओं ${a_1}x + {b_1}y + {c_1} = 0$,${a_1}x + {b_1}y + {d_1} = 0$ व ${a_2}x + {b_2}y + {c_2} = 0$, ${a_2}x + {b_2}y + {d_2} = 0$ से निर्मित समान्तर चतुभुज का क्षेत्रफल होगा

माना रेखा $\mathrm{y}+\mathrm{x}=0$ पर दो बिन्दु $\mathrm{B}$ व $\mathrm{C}$, मूल बिन्दु के सापेक्ष सममित है। माना $y-2 x=2$ पर एक बिन्दु $\mathrm{A}$ इस प्रकार है कि $\triangle \mathrm{ABC}$ एक समबाहु त्रिभुज है। तब $\triangle \mathrm{ABC}$ का क्षेत्रफल है:

  • [JEE MAIN 2023]

एक समबाहु त्रिभुज के आधार का समीकरण $2x - y = 1$ और शीर्ष $(-1, 2)$ है, तब त्रिभुज की भुजा की लम्बाई होगी

उस बिन्दु का बिन्दुपथ, जिसकी किन्हीं दो परस्पर लम्बवत् रेखाओं से दूरियों का योग $2$ इकाई है (प्रथम चतुर्थांश में), है  

माना $\mathrm{A}(\mathrm{a}, \mathrm{b}), \mathrm{B}(3,4)$ तथा $(-6,-8)$ एक त्रिभुज के केन्द्रक. परिकेन्द्रक तथा लंबकेन्द्र है। तो बिंदु $P(2 a+3,7 b+5)$ की रेखा $2 x+3 y-4=0$ से, रेखा $\mathrm{x}-2 \mathrm{y}-1=0$ समांतर नापी गई दूरी है।

  • [JEE MAIN 2024]