किसी समांतर श्रेणी के $m$ तथा $n$ पदों के योगफलों का अनुपात $m^{2}: n^{2}$ है तो दर्शाइए कि $m$ वें तथा $n$ वें पदों का अनुपात $(2 m-1):(2 n-1)$ है।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $a$ and $b$ be the first term and the common difference of the $A.P.$ respectively. According to the given condition,

$\frac{{{\rm{ Sum}}\,\,{\rm{of }}\,\,m\,\,{\rm{ terms }}}}{{{\rm{ Sum }}\,\,{\rm{of}}\,{\rm{ }}n{\rm{ }}\,\,{\rm{terms }}}} = \frac{{{m^2}}}{{{n^2}}}$

$\Rightarrow \frac{\frac{m}{2}[2 a+(m-1) d]}{\frac{n}{2}[2 a+(n-1) d]}=\frac{m^{2}}{n^{2}}$

$\Rightarrow \frac{2 a+(m-1) d}{2 a+(n-1) d}=\frac{m}{n}$        ........$(1)$

Putting $m=2 m-1$ and $n=2 n-1,$ we obtain

$\frac{2 a+(2 m-2) d}{2 a+(2 n-2) d}=\frac{2 m-1}{2 n-1}$

$\Rightarrow \frac{a+(m-1) d}{a+(n-1) d}=\frac{2 m-1}{2 n-1}$         ..........$(2)$

$\frac{{{m^{th}}\,\,{\rm{ term}}\,\,{\rm{ of}}\,\,{\rm{ A}}{\rm{.P}}{\rm{. }}}}{{{n^{{\rm{th }}}}\,\,{\rm{ term }}\,\,{\rm{of}}\,\,{\rm{ A}}{\rm{.P}}{\rm{. }}}} = \frac{{a + (m - 1)d}}{{a + (n - 1)d}}$

From $(2)$ and $(3),$ we obtain

$\frac{m^{H h} \text { termof A.P. }}{n^{t h} \text { termof A.P. }}=\frac{2 m-1}{2 n-1}$

Thus, the given result is proved.

Similar Questions

अनुक्रम में प्रत्येक के प्रथम पाँच पद लिखिये, जिनका $n$ वाँ पद दिया गया है

$a_{n}=n(n+2)$

माना $a_{1}, a_{2}, a_{3}, \ldots$ एक $A.P.$ है। यदि $\frac{a_{1}+a_{2}+\ldots+a_{10}}{a_{1}+a_{2}+\ldots+a_{p}}=\frac{100}{p^{2}}, p \neq 10$ है, तो $\frac{a_{11}}{a_{10}}$ बराबर है

  • [JEE MAIN 2021]

माना तीन अंक $a, b, c$ $A.P.$ में हैं। इनमें से प्रत्येक अंक को तीन बार प्रयोग कर $9$ अंको की संख्याएँ इस प्रकार बनाई जाती है कि तीन क्रमागत संख्याएँ कम से कम एक बार $A.P.$ में हो। इस प्रकार की कितनी संख्याएँ बनाई जा सकती है ?

  • [JEE MAIN 2023]

यदि $a,b,c,d,e$ समान्तर श्रेणी में हों, तो $a + b + 4c - 4d + e$ का मान $a$ के पदों में होगा (यदि संभव हो तो)

यदि किसी समान्तर श्रेणी का प्रथम पद $10$ व अन्तिम पद $50$ है तथा सभी पदों का योग $300$ हो, तो पदों की संख्या है