किसी समांतर श्रेणी के $m$ तथा $n$ पदों के योगफलों का अनुपात $m^{2}: n^{2}$ है तो दर्शाइए कि $m$ वें तथा $n$ वें पदों का अनुपात $(2 m-1):(2 n-1)$ है।
Let $a$ and $b$ be the first term and the common difference of the $A.P.$ respectively. According to the given condition,
$\frac{{{\rm{ Sum}}\,\,{\rm{of }}\,\,m\,\,{\rm{ terms }}}}{{{\rm{ Sum }}\,\,{\rm{of}}\,{\rm{ }}n{\rm{ }}\,\,{\rm{terms }}}} = \frac{{{m^2}}}{{{n^2}}}$
$\Rightarrow \frac{\frac{m}{2}[2 a+(m-1) d]}{\frac{n}{2}[2 a+(n-1) d]}=\frac{m^{2}}{n^{2}}$
$\Rightarrow \frac{2 a+(m-1) d}{2 a+(n-1) d}=\frac{m}{n}$ ........$(1)$
Putting $m=2 m-1$ and $n=2 n-1,$ we obtain
$\frac{2 a+(2 m-2) d}{2 a+(2 n-2) d}=\frac{2 m-1}{2 n-1}$
$\Rightarrow \frac{a+(m-1) d}{a+(n-1) d}=\frac{2 m-1}{2 n-1}$ ..........$(2)$
$\frac{{{m^{th}}\,\,{\rm{ term}}\,\,{\rm{ of}}\,\,{\rm{ A}}{\rm{.P}}{\rm{. }}}}{{{n^{{\rm{th }}}}\,\,{\rm{ term }}\,\,{\rm{of}}\,\,{\rm{ A}}{\rm{.P}}{\rm{. }}}} = \frac{{a + (m - 1)d}}{{a + (n - 1)d}}$
From $(2)$ and $(3),$ we obtain
$\frac{m^{H h} \text { termof A.P. }}{n^{t h} \text { termof A.P. }}=\frac{2 m-1}{2 n-1}$
Thus, the given result is proved.
यदि समान्तर श्रेणी के $n$ पदों का योग $3{n^2} + 5n$ व ${T_m} = 164$ हो, तो $m = $
यदि $\frac{1}{3}$ और $\frac{1}{{24}}$ के मध्य दो समान्तर माध्य पद ${A_1}$ व ${A_2}$ हों, तब ${A_1}$ व ${A_2}$ का मान होगा
माना एक समान्तर श्रेणी के प्रथम $\mathrm{n}$ पदों का योग $\mathrm{S}_{\mathrm{n}}$ है। यदि $\mathrm{S}_{10}=390$ तथा दसवें और पाँचवें पदों का अनुपात $15: 7$ है। तो $\mathrm{S}_{15}-\mathrm{S}_5$ बराबर है :
$1$ से $100$ तक आने वाले उन सभी पूर्णांकों का योगफल ज्ञात कीजिए जो $2$ या $5$ से विभाजित हों।
यदि किसी समांतर श्रेणी के प्रथम $p$ पदों का योग, प्रथम $q$ पदों के योगफल के बराबर हो तो प्रथम $(p+q)$ पदों का योगफल ज्ञात कीजिए।