$^{15}C_0^2{ - ^{15}}C_1^2{ + ^{15}}C_2^2 - ....{ - ^{15}}C_{15}^2$ = . . .
$15$
$-15$
$0$
$51$
${\left( {1 - 2\sqrt x } \right)^{50}}$ના દ્ઘિપદી વિસ્તરણમાં $x $ ની પૂર્ણાક ઘાતાંકના સહગુણકોનો સરવાળો . . . . . . . . . . થાય.
જો ${(1 + x + {x^2})^n}$ ના વિસ્તરણમાં ${a_r}$ એ ${x^r}$ નો સહગુણક દર્શાવે છે ,તો ${a_1} - 2{a_2} + 3{a_3} - .... - 2n\,{a_{2n}} = $
${(x + a)^n}$ ના વિસ્તરણમાં , $P$ એ અયુગ્મ પદનો સરવાળો દર્શાવે છે અને $Q$ એ યુગ્મ પદનો સરવાળો દર્શાવે છે તો $({P^2} - {Q^2})$ = . . .. .
$(x + 2)^{n-1} + (x + 2)^{n-2}. (x + 1) + (x + 2)^{n-3} . (x + 1)^2; + ...... + (x + 1)^{n-1}$ ના વિસ્તરણમાં $x^r (0 \le r \le n - 1)$ નો સહગુણક મેળવો
જો ${a_k} = \frac{1}{{k(k + 1)}},$( $k = 1,\,2,\,3,\,4,.....,\,n$), તો ${\left( {\sum\limits_{k = 1}^n {{a_k}} } \right)^2} = $