10-1.Thermometry, Thermal Expansion and Calorimetry
medium

ग्लिसरीन का आयतन प्रसार गुणांक $5 \times 10^{-4} K ^{-1}$ है। ग्लिसरीन के तापक्रम में $40^{\circ} C$ वृद्धि करने पर उसके घनत्व में आंशिक परिवर्तन होगा

A

$0.01$

B

$0.015$

C

$0.02$

D

$0.025$

(AIPMT-2015)

Solution

Let $r_0$ and $r_T$ be densities of glycerin at ${0^ \circ }C$ and  ${T^ \circ }C$ respectively. Then,

${\rho _T} = {\rho _0}\left( {1 – \gamma \Delta T} \right)$ 

Where $\gamma $ is the cofficient of volume expansion of glycerine and $\Delta T$ is rise in temperature.

$\frac{{{\rho _T}}}{{{\rho _0}}} = 1 – \gamma \Delta Y\,\,or\,\,\gamma \Delta T = 1 – \frac{{{\rho _T}}}{{{\rho _0}}}$

$Thus,\frac{{{\rho _0} – {\rho _T}}}{{{\rho _0}}} = \gamma \Delta T$

$Here,\gamma  = 5 \times {10^{ – 4}}{K^{ – 1}}\,and\,\Delta T = {40^ \circ }C = 40\,K$

The fractional change in the density of glycerin

$ = \frac{{{\rho _0} – {\rho _T}}}{{{\rho _0}}} = \gamma \Delta T = \left( {5 \times {{10}^{ – 4}}{K^{ – 1}}} \right)\left( {40\,K} \right) = 0.020$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.