सारणिक $\left| {{\rm{ }}\begin{array}{*{20}{c}}1&2&3\\3&5&7\\8&{14}&{20}\end{array}} \right|$ का मान होगा

  • A

    $20$

  • B

    $10$

  • C

    $0$

  • D

    $5$

Similar Questions

माना एक $A.P.$ के किसी भी तीन भिन्न क्रमागत पदों $\mathrm{a}, \mathrm{b}, \mathrm{c}$ के लिए रेखाएं $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ एक बिंदु $\mathrm{P}$ पर संगामी हैं तथा बिंदु $\mathrm{Q}(\alpha, \beta)$ के लिए समीकरण निकांय $x+y+z=6,2 x+5 y+\alpha z=\beta$ तथा $\mathrm{x}+2 \mathrm{y}+3 \mathrm{z}=4$, के अंतंत हल है। तो $(\mathrm{PQ})^2$ बराबर है ..........|

  • [JEE MAIN 2024]

माना $\alpha$ तथा $\beta$ समीकरण $x ^{2}+ x +1=0$ के मूल हैं, तो $R$ में $y \neq 0$ के लिए $\left| {\begin{array}{*{20}{c}}
{y\, + \,1}&\alpha &\beta \\
\alpha &{y\, + \,\beta }&1\\
\beta &1&{y\, + \,\alpha }
\end{array}} \right|$ बराबर है:

  • [JEE MAIN 2019]

यदि समीकरणों के निकाय $\alpha x+y+z=5$, $x +2 y +3 z =4, x +3 y +5 z =\beta$ के अनन्त हल है तो क्रमित युग्म $(\alpha, \beta)$ का मान होगा:

  • [JEE MAIN 2022]

सारणिक $\left| {\,\begin{array}{*{20}{c}}a&b&{a - b}\\b&c&{b - c}\\2&1&0\end{array}\,} \right|$ का मान शून्य होगा यदि $a,b,c$ होंगे

समीकरण $\left| {\,\begin{array}{*{20}{c}}a&a&x\\m&m&m\\b&x&b\end{array}\,} \right| = 0$ के मूल हैं