અતિવલય $H$ નાં શિરોબિંદુઓ $(\pm \,6,0)$ અને તેની ઉત્કેન્દ્રતા $\frac{\sqrt{5}}{2}$ છે. ધારો કે $N$ એ,પ્રથમ ચરણમાં આવેલ કોઈક બિંદુ આગળ $H$ નો અભિલંબ છે અને તે રેખા $\sqrt{2} x+y=2 \sqrt{2}$ ને સમાંતર છે. જો $H$ અને $y$-અક્ષ વચ્યેના $N$ ના રેખાખંડની લંબાઈ $d$ હોય, તો $d^2=............$

  • [JEE MAIN 2023]
  • A

    $215$

  • B

    $216$

  • C

    $217$

  • D

    $218$

Similar Questions

અતિવલય $x^2 - 3y^2 = 1$ ના અનુબદ્ધ અતિવલયની ઉત્કેન્દ્રતા કેટલી થાય છે ?

ધારો કે  $\mathrm{S}$ એ અતિવલય $\frac{x^2}{3}-\frac{y^2}{5}=1$ ની ધન $x$-અક્ષ પર આવેલ નાભિ છે. ધારો કે $\mathrm{C}$ એ કેન્દ્ર $\mathrm{A}(\sqrt{6}, \sqrt{5})$ અને બિંદુ $S$ માંથી પસાર થતું વર્તુળ છે.જો $\mathrm{O}$ ઊગમબિંદૂ હોય અને $SAB$ એ $C$ નો વ્યાસ હોય, તો ત્રિકોણ $OSB$ ના ક્ષેત્રફળનો વર્ગ ............. છે. 

  • [JEE MAIN 2024]

અતિવલય $4x^2 - 9y^2 - 36 = 0$ ની નાભિઓ :

વર્તૂળ $x^2 + y^2 - 8x = 0$ અને અતિવલય $\frac{{{x^2}}}{9}\,\, - \,\,\frac{{{y^2}}}{4}\,\, = \,\,1\,$બિંદુ $A$ અને $B$ આગળ છેદે છે. રેખા $2x + y = 1$ એ અતિવલય $\frac{{{x^2}}}{{{a^2}}}\,\, - \,\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1\,$નો સ્પર્શક છે. જો આ રેખા એ ખૂબ જ નજીકની નિયામિકા અને $x$-અક્ષોના છેદબિંદુમાંથી પસાર થતી હોય, તો અતિવલયની ઉત્કેન્દ્રતા મેળવો.

$e_{1}$ અને $e_{2}$ એ બે ઉત્કેન્દ્રતાઓ અનુક્રમે ઉપવલય $\frac{x^{2}}{25}+\frac{y^{2}}{b^{2}}=1(b<5)$ અને અતિવલય $\frac{ x ^{2}}{16}-\frac{ y ^{2}}{ b ^{2}}=1$ માટે $e _{1} e _{2}=1$ થાય. જો $\alpha$ અને $\beta$ એ અનુક્રમે ઉપવલય અને અતિવલયના નાભીઓ વચ્ચેનું અંતર હોય તો $(\alpha, \beta)$ ની જોડની કિમત શોધો.

  • [JEE MAIN 2020]