ચામડીની વ્યાધિવાળી $200$ વ્યક્તિઓ છે. $120$ વ્યક્તિઓને રસાયણ $C _{1}$ અને $50$ વ્યક્તિઓને રસાયણ $C _{2}$ ની અસર માલૂમ પડી અને $30$ ને બંને રસાયણો $C _{1}$ અને $C _{2}$ ની અસર માલૂમ પડી. રસાયણ $C _{1}$ ની અસર હોય, પરંતુ રસાયણ $C _{2}$ ની અસર ન હોય તેવી વ્યક્તિઓની સંખ્યા શોધો.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $U$ denote the universal set consisting of individuals suffering from the skin disorder, $A$ denote the set of individuals exposed to the chemical $C_{1}$ and $B$ denote the set of individuals exposed to the chemical $C_{2}$

Here $\quad n( U )=200, n( A )=120, n( B )=50$ and $n( A \cap B )=30$

From the Venn diagram given in Fig we have $A=(A-B) \cup(A \cap B)$

$n(A) = n(A - B) + n(A \cap B)\quad $ ( Since $(A - B)$ and $A \cap B$ are disjoint. )

or $n( A - B )=n( A )-n( A \cap B )=120-30=90$

Hence, the number of individuals exposed to chemical $C_{1}$ but not to chemical $C_{2}$ is $90$

865-s222

Similar Questions

$40$ વિદ્યાર્થીઓનો એક સમૂહ $3$ વિષયો - ગણિતશાસ્ત્ર, ભૌતિકશાસ્ત્ર અને રસાયણશાસ્ત્ર ની પરીક્ષામાં ઉપસ્થિત થાય છે. એવું જોવામાં આવ્યુ છે કે બધા જ વિદ્યાર્થીઓ ઓછામાં ઓછા એક વિષયમાં ઉતીર્ણ થયા છે, $20$ વિદ્યાર્થીઓ ગણિતશાસ્ત્રમાં ઉતીર્ણ થયા છે, $25$ વિદ્યાર્થીઓ ભૌતિકશાસ્ત્રમાં ઉતીર્ણ થયા છે, $16$ વિદ્યાર્થીઓ રસાયણશાસ્ત્રમાં ઉતીર્ણ થયા છે, વધુમાં વધુ $11$ વિદ્યાર્થીઓ ગણિતશાસ્ત્ર અને ભૌતિકશાસ્ત્રમાં બંનેમાં ઉતીર્ણ થયા છે, વધુમાં વધુ $15$ વિદ્યાર્થીઓ ભૌતિકશાસ્ત્ર અને રસાયણશાસ્ન્ર માં ઉતીર્ણ થયા, વધુમાં વધુ $15$ વિદ્યાર્થીઓ ગણિતશાસ્ત્ર અને રસાયણશાસ્ત્રમાં ઉતીર્ણ થયા છે. ત્રણેય વિષયમાં ઉતીર્ણ થનાર વિદ્યાર્થીઓની મહત્તમ સંખ્યા___________ છે.

  • [JEE MAIN 2024]

એ ક શાળાના $600$ વિદ્યાર્થીઓના સર્વેક્ષણમાં $150$ વિદ્યાર્થીઓ ચા પીતા હતા અને $225$ કૉફી પીતા હતા. $100$ વિદ્યાર્થીઓ ચા અને કૉફી બંને પીતા હતા. કૉફી અને ચા બંને પૈકી કંઈપણ નહિ પીનારા વિદ્યાર્થીઓની સંખ્યા શોધો.

$70$ વ્યક્તિઓના જૂથમાં, $37$ કૉફી પસંદ કરે છે અને $52$ વ્યક્તિને ચા પસંદ છે. તથા દરેક વ્યક્તિ આ બે પીણાંમાંથી ઓછામાં ઓછું એક પીણું પસંદ કરે છે. કેટલી વ્યક્તિઓ કૉફી અને ચા બને પસંદ કરે છે ?

એક સર્વે મુજબ $63\%$ અમેરીકનને ચીઝ અને$76\%$ ને સફરજન પસંદ છે. જો $x\%$ ને ચીઝ અને સફરજન પસંદ હોય તો  . . . .

એક સંસ્થા પ્રસંગ '$A$' માં $48$ પ્રસંગ '$B$' માં $25$ અને પ્રસંગ '$C$ ' માં $18$ મેડલ આપે છે. જો આ મેડલ $60$ પુરુષોને ફાળે ગયા હોય અને ફક્ત પાંચ પુરુષોને ત્રણેય પ્રસંગોમાં મેડલ મળ્યા હોય, તો ત્રણ પ્રસંગોમાંથી કેટલાને બરાબર બે મેડલ મળ્યા હશે ?

  • [JEE MAIN 2023]