दी गई परिभाषाओं के आधार पर निम्नलिखित प्रत्येक अनुक्रम के प्रथम तीन पद बताइए

$a_{n}=\frac{n-3}{4}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Here $a_{n}=\frac{n-3}{4} .$ Thus, $a_{1}=\frac{1-3}{4}=-\frac{1}{2}, a_{2}=-\frac{1}{4}, a_{3}=0$

Hence, the first three terms are $-\frac{1}{2},-\frac{1}{4}$ and $0 .$

Similar Questions

श्रेणी $2,\,5,\,8...$ के प्रथम $2n$ पदों का योग, श्रेणी $57,\,59,\,61...$ के प्रथम $n$  पदों के योग के बराबर हो तो $n$ का मान होगा

  • [IIT 2001]

एक समांतर श्रेणी के प्रथम चार पदों का योगफल $56$ है। अंतिम चार पदों का योगफल $112$ है। यदि इसका प्रथम पद $11$ है, तो पदों की संख्या ज्ञात कीजिए।

यदि $\log _e a, \log _e b, \log _e c$ एक $A.P.$ में हैं तथा $\log _e a-\log _e 2 b, \log _e 2 b-\log _e 3 c, \log _e 3 c-\log _e a$ भी एक $A.P.$ में हैं, तो $a: b: c$ बराबर है ..................

  • [JEE MAIN 2024]

श्रेणी $2\sqrt 2  + \sqrt 2  + 0 + .....$ का $8$ वाँ पद होगा

श्रेणी $101 + 99 + 97 + ..... + 47$ में पदों की संख्या है