एक समान्तर चतुर्भुज की दो भुजायें, रेखा $x + y =3$ तथा $x-y+3=0$ के अनुदिश है। यदि इसके विकर्ण बिन्दु $(2,4)$ पर प्रतिच्छेद करते है, तो इसका एक शीर्ष होगा
$(3, 5)$
$(2, 1)$
$(2, 6)$
$(3, 6)$
पाइथागोरस प्रमेय के प्रयोग बिना दिखलाइए कि बिंदु $(4,4),(3,5)$ और $(-1,-1)$ एक समकोण त्रिभुज के शीर्ष हैं।
एक रेखा $L$, बिन्दुओं $(1, 1)$ व $(2, 0)$ से होकर जाती है एवं एक अन्य रेखा $L'$, बिन्दु $\left( {\frac{1}{2},0} \right)$ से होकर जाती है एवं $L$ पर लम्ब है, तो रेखाओं $L$ व $L'$ तथा $y$-अक्ष द्वारा निर्मित त्रिभुज का क्षेत्रफल है
उस बिन्दु का बिन्दुपथ जो कि सरल रेखाओं $3x + 4y - 11 = 0$ व $12x + 5y + 2 = 0$ से समान दूरी पर स्थित है एवं मूल बिन्दु के समीप है, है
माना भुजा $a$ के एक वर्ग की संलग्र भुजाओं की प्रवणताएं $m _1, \quad m _2$ इस प्रकार है कि $a ^2+11 a +3\left( m _2^2+ m _2^2\right)=220$ है। यदि वर्ग का एक शीर्ष $(10(\cos \alpha-\sin \alpha), 10(\sin \alpha+\cos \alpha)), \alpha \in\left(0, \frac{\pi}{2}\right)$ है तथा एक विकर्ण का समीकरण $(\cos \alpha-\sin \alpha) x +(\sin \alpha+\cos \alpha) y =10$ है, तो $72\left(\sin ^4 \alpha+\cos ^4 \alpha\right)+a^2-3 a+13$ बराबर है।
एक बिन्दु $P$, रेखा $2 x -3 y +4=0$ पर गति करता है। यदि $Q (1,4)$ तथा $R (3,-2)$ निशिचत बिन्दु हैं, तो $\triangle PQR$ के केन्द्रक का बिन्दुपथ (locus) एक रेखा है