$1\,kg$ के पिण्ड का स्थिति सदिश $\overrightarrow{ r }=(3 \hat{ i }-\hat{ j }) m$ है तथा इसका वेग $\overrightarrow{ v }=(3 \hat{ j }+ k ) ms ^{-1}$ है। इसके कोणीय संवेग का मान $\sqrt{ x } Nm$ है तब $x$ होगा

  • [JEE MAIN 2022]
  • A

    $89$

  • B

    $91$

  • C

    $90$

  • D

    $95$

Similar Questions

अनुसार निर्भर करता है जहाँ $k=1 kgs ^{-2}$ है। समय $t=0$ पर कण की स्थिति $\vec{r}=\left(\frac{1}{\sqrt{2}} \hat{i}+\sqrt{2} \hat{j}\right) m$ व इसका वेग $\vec{v}=\left(-\sqrt{2} \hat{i}+\sqrt{2} \hat{j}+\frac{2}{\pi} \hat{k}\right) m s^{-1}$ है। माना $v_x$ तथा $v_y$ क्रमशः कण के वेग के $x$ तथा $y$ घटक हैं। गुरूत्व को नगण्य मानें। $z=0.5 m$ पर $\left(x v_y-y v_x\right)$ का मान $m^2 s^{-1}$ में होगा।

  • [IIT 2022]

यदि पृथ्वी को $R$ त्रिज्या तथा $M$ द्रव्यमान का एक गोला माना जाए, तो इसकी घूर्णन अक्ष के परित: समयांतराल $T$ के पदों में कोणीय संवेग का मान होगा

कणों के निकाय का कोणीय संवेग परिवर्तित होता है, यदि

द्रव्यमान $M$ तथा लम्बाई $a$ की एक पतली छड़ एक क्षैतिज तल में बिन्दु $O$ से गुजरने वाले एक स्थिर ऊर्ध्वाधर अक्ष के परितः घूर्णन करने के लिए स्वतंत्र है। द्रव्यमान $M$ तथा त्रिज्या $a / 4$ की एक पतली वृत्ताकार डिस्क को एक छड़ पर उसके स्वतंत्र सिरे से $a / 4$ दूरी पर चित्रानुसार धुराग्रस्थ (pivoted) किया गया है, जिससे वह अपने ऊर्ध्वाधर अक्ष के परितः घूर्णन करने के लिए स्वतंत्र है। मान ले कि छड़ और डिस्क दोनों का एकसमान घनत्व है, तथा गति के दौरान दोनों क्षैतिज रहते हैं। एक स्थिर प्रेक्षक किसी क्षण छड़ को कोणीय वेग (angular velocity) $\Omega$ से तथा डिस्क को कोणीय वेग $4 \Omega$ से घूर्णन करते हुए पाता है। इस निकाय का कोणीय संवेग (angular momentum) बिन्दु $O$ के परितः $\left(\frac{ M a^2 \Omega}{48}\right) n$ है। $n$ का मान होगा।

  • [IIT 2021]

द्रव्यमान $M=0.2 kg$ का एक कण आरंभ में $x y$-समतल के एक बिन्दु $( x =-l, y =-h)$ पर विरामावस्था में है, जहाँ $l=10 m$ तथा $h=1 m$ हैं। समय $t =0$ पर कण को $a =10 m / s ^2$ के नियत त्वरण (constant acceleration) से धनात्मक $x$-अक्ष की दिशा में त्वरित किया जाता है। मूल बिन्दु के सापेक्ष, कण के कोणीय संवेग (angular momentum) तथा बल आघूर्ण (torque) SI इकाई में क्रमशः $\overrightarrow{ L }$ और $\vec{\tau}$ से परिभाषित हैं। $\hat{ i }, \hat{ j }$ तथा $\hat{ k }$ क्रमश: धनात्मक $x, y$ और $z$-अक्षों की दिशाओं में इकाई सदिशें (unit vectors) हैं। यदि $\hat{ k }=\hat{ i } \times \hat{ j }$, तो निम्न में से कौन सा (से) कथन सत्य है (हैं)?

$(A)$ समय $t =2 s$ पर कण बिन्दु $(x-l, y--h)$ पर पहुँचता है

$(B)$ $\vec{\tau}=2 \hat{ k }$, जब कण बिन्दु $(x=1, y=-h)$ से गुजरता है

$(C)$ $\overrightarrow{ L }=4 \hat{ k }$, जब कण बिन्दु $(x=l, y=-h)$ से गुजरता है

$(D)$ $\vec{\tau}=\hat{ k }$, जब कण बिन्दु $(x-0, y-h)$ से गुजरता है

  • [IIT 2021]