3-1.Vectors
medium

सदिश $\overrightarrow{ A }=\hat{ i }+\hat{ j }+\hat{ k }$ का सदिश $\overrightarrow{ B }=\hat{ i }+\hat{ j }$ पर प्रक्षेप ज्ञात कीजिये।

A

$\sqrt{2}(\hat{i}+\hat{j})$

B

$(\hat{i}+\hat{j})$

C

$\sqrt{2}(\hat{i}+\hat{j}+\hat{k})$

D

$2(\hat{i}+\hat{j}+\hat{k})$

(JEE MAIN-2021)

Solution

Projection of vector $A$ on vector $B$

$(A \cos \theta) \hat{B}=A\left(\frac{\bar{A} \cdot \bar{B}}{A B}\right) \hat{B}=\frac{\bar{A} \cdot \bar{B}}{B} \hat{B}$

$=\frac{2}{\sqrt{2}}\left(\frac{\hat{i}+\hat{j}}{\sqrt{2}}\right)=\hat{i}+\hat{j}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.