सदिश $\overrightarrow{ A }=\hat{ i }+\hat{ j }+\hat{ k }$ का सदिश $\overrightarrow{ B }=\hat{ i }+\hat{ j }$ पर प्रक्षेप ज्ञात कीजिये।
$\sqrt{2}(\hat{i}+\hat{j})$
$(\hat{i}+\hat{j})$
$\sqrt{2}(\hat{i}+\hat{j}+\hat{k})$
$2(\hat{i}+\hat{j}+\hat{k})$
यदि$|\mathop A\limits^ \to \times \mathop B\limits^ \to |\, = \,|\mathop A\limits^ \to \,.\,\mathop B\limits^ \to |,$ तो $\mathop A\limits^ \to $ तथा $\mathop B\limits^ \to $ के बीच कोण ........ $^o$ है
$\overrightarrow{ A } \times 0$ का परिणाम होगा
किन्ही दो सदिश $\overrightarrow A $ तथा $\overrightarrow B $ के लिये यदि $\mathop A\limits^ \to \,.\,\mathop B\limits^ \to = \,\,|\mathop A\limits^ \to \times \mathop B\limits^ \to |$ हो तो $\mathop C\limits^ \to = \mathop A\limits^ \to + \mathop B\limits^ \to $ का परिमाण होगा