- Home
- Standard 11
- Physics
3-1.Vectors
medium
सदिश $\overrightarrow{ A }=\hat{ i }+\hat{ j }+\hat{ k }$ का सदिश $\overrightarrow{ B }=\hat{ i }+\hat{ j }$ पर प्रक्षेप ज्ञात कीजिये।
A
$\sqrt{2}(\hat{i}+\hat{j})$
B
$(\hat{i}+\hat{j})$
C
$\sqrt{2}(\hat{i}+\hat{j}+\hat{k})$
D
$2(\hat{i}+\hat{j}+\hat{k})$
(JEE MAIN-2021)
Solution
Projection of vector $A$ on vector $B$
$(A \cos \theta) \hat{B}=A\left(\frac{\bar{A} \cdot \bar{B}}{A B}\right) \hat{B}=\frac{\bar{A} \cdot \bar{B}}{B} \hat{B}$
$=\frac{2}{\sqrt{2}}\left(\frac{\hat{i}+\hat{j}}{\sqrt{2}}\right)=\hat{i}+\hat{j}$
Standard 11
Physics